HYPERSONIC VEHICLE TRAJECTORY
OPTIMIZATION AND CONTROL

S. N. Balakrishnan
J. Shen
J. R. Grohs

Dept. of Mechanical & Aerospace Engineering
and Engineering Mechanics
University of Missouri-Rolla

Rolla, MO 65409-0050

FINAL REPORT

July 1997

Grant Number: NAG 1 1728
Hypersonic Vehicles Office
Nasa Langley Research Center
Hampton, VA 23681-0001

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
BACKGROUND 2
WHY NEURAL NETWORKS . . . 3
LITERATURE REVIEW . . . e 4
PROBLEM FORMULATION 18
OPTIMIZATION/CONTROL s 20
NUMERICAL RESULTS e 30
CONCLUSIONS . . 32
ACKNOWLEDGMENT s 32
BIBLIOGRAPHY 33
FIGURES . .. 37
APPENDIX e 52

it

HYPERSONIC VEHICLE TRAJECTORY OPTIMIZATION AND CONTROL

EXECUTIVE SUMMARY

Two classes of neural networks have been developed for the study of hypersonic vehicle
trajectory optimization and control.

The first one is called an ‘adaptive critic’. The uniqueness and main features of this approach
are that: 1) they need no external training, 2) they allow variability of initial conditions, and 3) they
can serve as feedback control. This is used to solve a ‘free final time’ two-point boundary value
problem that maximizes the mass at the rocket burn-out while satisfying the pre-specified burn-out
conditions in velocity, flightpath angle, and altitude.

The second neural network is a recurrent network. An interesting feature of this network
formulation is that when its inputs are the coefficients of the dynamics and control matrices, the
network outputs are the Kalman sequences (with a quadratic cost function); the same network is also
used for identifying the coefficients of the dynamics and control matrices. Consequently, we can use
it to control a system whose parameters are uncertain.

Numerical results are presented which illustrate the potential of these methods.

I. BACKGROUND

For the United States to maintain its leadership in space technology, cheaper means of space
transportation - alternatives to space shuttle must be developed. In order to develop such an
alternative, different configurations of hypersonic vehicles must be studied from the perspectives of
cost-effective performance. A major part of such study involves optimal trajectory design for its
mission and control of vehicles. Since current state of knowledge of hypersonic vehicles (in
atmospheric flight, especially) is limited, it is imperative that any tool that is developed for trajectory
optimization and control be usable with variations in flight parameters. There are quite a few
methods - direct and indirect - available in the existing literature which deal with trajectory
optimization and optimal control. However, they are either ill-suited for design or do not consider
the design phase of a vehicle. First, for each scenario, typically, a two-point boundary value problem
needs to be solved. This process could lead to an enormous amount of time when several
combinations of scenarios are considered. Second, many trajectory optimization methods do not
directly yield a feedback form of control that can be used in flight.

In this study, two new neural network based approaches have been formulated which address
the two problems mentioned. The resulting design technique enables the user to study optimal
trajectory of hypersonic vehicles with a set of predetermined neural networks. For an envelope of
scenarios, this approach is expected to yield near optimal trajectories. We formulate the
problem in such a way as to produce a feedback control directly. In the case of recurrent networks,

the gains of the matrices used in a linearized control.

II. WHY NEURAL NETWORKS

Use of direct or indirect methods of optimization necessitates having to solve a problem for
each set of initial conditions. This requires determining a separate solution for each possible initial
condition for a given system. Dynamic programming is also a method of determining optimal control
for a family of initial conditions. However, the usual method of solution becomes very difficult to
solve in higher dimensions and nonlinear systems. These methods of solution for control do not
usually yield a feedback form of control in terms of states either.

Other methods of solution also have their advantages and disadvantages. Neighboring
optimal control is beneficial in that the solution of a single two-point boundary value problem
(TPBVP) allows an approximate solution over a limited range of initial conditions. The disadvantage
is that approximation methods such as neighboring optimal control can fail at a distance from the
original TPBVP solution.

Currently, there is no unified mathematical formalism under which a controller can be
designed for nonlinear systems. Techniques like feedback linearization have been used for a few
nonlinear problems under limited conditions, such as equal number of inputs and outputs. More
rigorous and general solutions are available with linearized models; however, they are restricted by
the assumption of linear models. Other available solutions for nonlinear controllers are highly
problem oriented. Consequently, we propose a formulation with neural networks which: 1) solves
a nonlinear control problem directly without any approximation to the system model (in the absence
of a good model this approach can synthesize a nonlinear model of the states), 2) yield a control law
in a feedback form as a function of the current states, and 3) maintain the same structure regardless

of the type or problem (handles linear problems as well). Sucha formulation is afforded by the field

of neural networks. In the following sections, we trace the development of neural networks and

development of learning control in particular.

OI. LITERATURE REVIEW

The development of intelligent control system design techniques has a long and rich history
as does the field of control systems engineering in general. Neural network techniques have also been
used in control systems for quite a long time but recently have become very popular. This section
contains a brief survey of the history of control ranging from cybernetics in the 1940's through
learning control systems and the beginning of neural control in the 1960's. The next important
landmark occurred with the use of critic architectures in reinforcement learning systems. We
conclude the section with a brief survey of current literature in neural control organized in the areas
of system identification, nonlinear, adaptive, and optimal neural control.

1. Cvybemnetics. Neural Networks and Learning Control. Norbert Wiener is recognized

as the father of cybernetics, a field which he describes as “the control and communication in the
animal and in the machine” [1]. Cybernetics also provided some of the motivation for the
development of control theory and neural networks during the 1950's and 1960's. For example,
Ashby contributed two complementary monographs in cybernetics, Design for a Brain [2] and An
Introduction to Cybernetics [3] which discussed control and communication in biological systems.
In the former, Ashby gave an early implementation of an artificial neural network called the hemostat.
The latter contribution was a careful development of cybernetics intended to popularize the
technology. Topics discussed include feedback, stability, a black box theory for large systems,

regulation and control in biological systems, and hierarchical control.

K. S. Fu gives one of the first formal descriptions of learning control in [4]. A learning
control system is a control system capable of modifying its behavior based on experience in order to
maintain acceptable performance in the presence of uncertainties. Possible measures of performance
include the amount of time required to adapt to changes and the evaluation of suitable performance
indices. A learning control system is distinguished from adaptive control systems through its ability
to recognize familiar patterns in a situation and, based on past experience, to adjust in order to
improve performance. Adaptive control systems emphasize a control system’s ability to react to new
situations.

Sklansky gives an early survey of learning control [5]. According to Sklansky, learning in the
automatic control literature is associated with a hierarchical arrangement of three feedback loops.
These are the controller, a system identifier or pattern recognizer, and a teacher. The pattern
recognizer transforms observable quantities in the system into a fixed set of categories, each of which
corresponds to a set of controller parameters. Categories are represented by fixed regions in an
intermediate feature space. The teacher provides information to the pattern recognizer for adjusting
the boundaries between categories in the feature space so that improved control system performance
results. An adaptive control system uses only the first two loops. The learning loop, which
distinguishes a learning control system from an adaptive control system, sends reinforcement signals
in the form of a reward or a punishment to the pattern recognizer based on an assessment of current
control system performance.

The advantage of the use of the learning loop is that it provides a means of training the pattern
recogrizer on-line. Sklansky describes five techniques for the design of learning control systems and

notes their interrelationships and pattern classification. These techniques are decision theory,

trainable threshold logic, hill climbing, sample set construction, and Markov chains. In the decision
theoretic approach, the boundaries between classes are determined by estimating joint probability
densities using measurements taken from the system during operation. The trainable threshold logic
method which Sklansky describes is actually a precursor to the use of neural networks for control.
In this method, category boundaries are moved by adjustment of weighted sums of components in
a feature vector. this weighted sum is then passed through a threshold function to produce a bipolar
control signal. The teacher in a threshold logic learning system provides information for adjusting
weights in the categorizer. The sample set construction technique breaks categories into
subcategories based on distances measured in the feature space. During training a fixed set of
prototype feature vectors are developed with the subcategories given by open balls surrounding the
prototype. We then form the category regions as the unions of subcategories. The boundary between
categories is formed as a sequence of hyperplanes perpendicular to hyperplanes joining prototypes
from each category.

Ideas from decision theory, trainable threshold logic, and sample set construction are
prominent in the development of neural network theory. In 1966 Nikolic and Fu [6] describe an
algorithm based on decision theory for on-line learning control of an unknown discrete time plant
without an external teacher. Control actions are chosen from a finite set. The performance index is
the conditional expectation of the instantaneous performance evaluations with respect to observed
states and allowable control actions. The model used by Nikolic and Fu is very similar to Sklansky’s
general learning control system and they include provisions for the case when the teacher does not
have perfect knowledge of the plant being controlled. This work provides the foundation for later

critic based schemes.

Tsypkin also makes contributions in learning control systems based on decision theory and
optimization. In an article about ‘self-learning’ [7], Tsypkin distinguishes between three methods for
determining decision rules in the pattern recognizer. The first method assumes that statistical
information is available in advance. In this case statistical decision theory can be used to determine
the decision rule. In the second method, the designer assumes that a sequence of correctly classified
patterns exists. In this case, the decision rule is determined based on data in the training set and the
method is called learning with reinforcement. In the third case, no information is assumed initially
and the decision rule is found using observed but unclassified patterns from the system. Tsypkin calls
this third case self-learning. Extensions of the idea of self-learning in automatic systems applied to
pattern recognition, identification, dual control, and the allocation of resources are discussed in a later
work [8] and compiled into a text [9].

The improvement in performance with respect to given performance objectives and based on
experience is a common theme in learning control. There are three components related to
performance in the control system: 1) the specification optimal performance objectives, 2) the
assessment of the system’s level of performance, and 3) a means for improving performance over
time. Cybernetics and learning control are based on the use of pattern recognition, optimization, and
control of uncertain dynamic systems using biologically inspired models of intelligent behavior.
Rudimentary neural networks in the form of linear threshold logic units have been used as an
implementation medium for learning control systems cited above. We now turn to a discussion of
a subclass of learning control systems called reinforcement learning systems which build in methods

for assessing and improving control system performance.

2. Learning with a Critic. The ground breaking work on learning control in the 1960's,

along with studies in cybernetics, has led to a study of critic-based systems for two decades and this
study has recently been revived even in the current decade. In 1970, Mendel and McLaren introduced
a concept in learning control which they call reinforcement learning [10]. Reinforcement learning
control is developed as a subclass of learning control discussed above with the addition of
performance assessment and a method for modifying controller actions. The idea is to provide a
means of control for unstructured environments where the plant model may not be known or where
a complex performance measure is used [11]. In reinforcement learning systems, a critic is used to
monitor plant inputs and outputs and to provide an evaluation signal which represents an indication
of current performance to the controller.

Widrow, Gupta and Maitra [12] describe the concept of the critic for adaptation of neural
networks. Widrow et al., delineate three separate modes of learning. A supervised learning system,
also known as learning with a teacher, modifies the parameters of the neural network using error
between network output signals and the desired output signals. The assumption here is that the
desired output signals corresponding to each input signal are known at the time that learning is taking
place. In an unsupervised learning procedure, also called learning without a teacher or decision-
directed learning, the parameter adjustments are not guided by knowledge of a desired output signal.
Learning with a critic bridges the gap between the two previous methods. Learning with a critic does
not assume that desired output signals are known for each input signal but rather that some indication
can be made with respect to network performance over a series of trials.

Barto, Sutton and Anderson [13] extend the idea of learning with a critic through the

development of a learning system which includes both an adaptive critic element and an adaptive

search element. As in the learning with a critic approach, explicit desired control actions are
unknown. The objective is to provide control signals which tend to optimize a performance index.
The purpose of the adaptive search element is to implement a trial-and-error procedure to associate
control vectors with respective observations of the state of the system being controlled. The adaptive
critic element receives a success/failure signal from an outside source as a result of a series of control
actions. This signal is called an external reinforcement signal. The adaptive critic element also
receives weighted signals from each of the state variable of the controlled system. The external
reinforcement signal provides feedback for modifying the strengths of these connections. The
adaptive critic element uses the external reinforcement signal and weighted state signals to provide
a continuous evaluation of performance to help guide the search for appropriate control actions.
Sutton calls the critic based adaptation algorithm the “Adaptive Heuristic Critic” and develops its
application in credit assignment problems in his Ph.D. dissertation [14].

The implementation of the adaptive critic is based on Widrow’s method for learning with a
critic but provides a higher level of feedback to the control system. Two sets of connection weights
connecting two processing elements are adjusted during the leaming procedure. This, in conjunction,
with the active search distinguishes the adaptive critic architecture from previous work. The adaptive
critic architecture is capable of learning to balance a pole mounted on a movable cart by applying
control signals to a movable cart with no prior knowledge of the system to be controlled. This ability
to determine control actions assuming no previous knowledge is a great strength of the adaptive critic
architecture. The disadvantage of the architecture is that many failed trials occur before a successful
run is completed. The cart-pole solution also depends on the partitioning of the problem state space

into a finite number of regions. This partitioning may not be practical in problems where finer control

is required. In this case the number of regions required may be too large for effective results.
Examples of such problems include those with time-varying dynamics, tracking problems, and some
nonlinear problems.

Barto et al. [13], distinguish between supervised learning paradigms and reinforcement
learning used in the adaptive critic approach. In the supervised learning approach training proceeds
in several steps. First an input pattern is presented to a neural network. An output response is
produced based on the current parameters embedded within the network. The response is then
compared with a desired response and error is used to modify the neural network parameters to
improve its mapping. Reinforcement learning is based on an evaluation of the current network output
in relationship with current external factors (states in a system for example). This evaluation may be
as simple as a binary decision indicating a reward for proper response or punishment for inappropriate
response. The quality of feedback for a system using reinforcement learning is lower than that
available in a supervised learning system. This property makes reinforcement learning methods useful
for situations when a quantitative answer is not available.

Werbos [15] defends the use of neural networks for control applications. He suggests that
neural networks will be able to solve difficult problems faced by modern controls engineers including
the real-time control of nonlinear possibly unknown systems with high noise levels and high
throughput. Werbos describes five dominant paradigms for use in neural control systems. These are
Supervised Control, Inverse Dynamics, Stabilization Systems, Backpropagation Through Time and
Adaptive Critics with Reinforcement Learning. The Supervised Control architecture uses a neural
network trained to map current state vectors to corresponding control vectors. In the inverse

dynamics approach, observed system state is assumed to be a function of the current control and

10

previous system state. The neural network is trained to invert the plant in order to provide control
actions which lead to desired states. Stabilization systems are designed to provide stable control in
tracking and regulator problems. Backpropagation through time depends on a plant model and a
performance index written in terms of control and state actions. The neural network predicts a
sequence of states given a sequence of control actions. The backpropagation algorithm then provides
derivatives of the performance index which can be used to update control actions at each step along
the way. Adaptive critic architectures and reinforcement learning are the focal point in [33]. Werbos
describes systems based on the adaptive critic as an approximation to dynamic programming and
presents the notion of the backpropagated critic.

Jameson [16] claims to be the first to publish results using a backpropagated critic. The
primary difference between the adaptive critic architecture of Barto Sutton, and Anderson and the
backpropagated critic is the maximization of the critic output providing gradient information via a
plant model network to the controller so that future control actions can be improved. The purpose
of the critic network in this architecture is to predict future reinforcement signals from the
environment. The critic network and a model of the plant are used to calculate derivatives of the
predicted reinforcement signal with respect to control actions. The control actions are then modified
to improve performance. The prediction provided by the critic network is also improved by
comparing the actual reinforcement signal with previously stored predictions. The backpropagated
critic, like previous critic designs, assumes no knowledge of the plant and results are improved by
making multiple attempts at a solution.

Sofge and White [17] advocate the development of neural control architectures which can be

adapted on-line for stable operation of unknown, nonlinear plants which may include noise in the

11

feedback loop. They suggest that adaptive critic architectures may be used in manufacturing the
process control applications to provide flexibility and efficient adaptability through changes which
occur during the life-cycle of equipment. The authors use an adaptive critic architecture based on
Albus’ CMAC neural network [18] to do process control in a thermoplastic composite manufacturing
process. According to Sofge and White, “the goal of on-line learning is the real-time optimization
of a large scale non-linear process at minimal computational cost.” The authors have designed and
built an adaptive critic system for control of manufacturing processes.

Watkins gives a recent implementation of reinforcement learning called Q-learning in his
dissertation [19]. Q-learning is based on the approximation of a real valued function, called the Q-
function by Watkins. The q-function is a function that maps current plant state and control into an
estimation of the future performance of the system. This estimate is based on the assumption that
optimal control is applied to the plant from the next time instant forward. A Q-learning algorithm
is an algorithm which iteratively improves the estimation for the Q-function. There is a close
correspondence between Q-learning and dynamic programming used in the control of dynamical
systems [20]. Bradtke [21] distinguishes between two types of Q-learning algorithms. Bradtke calls
the form described above an optimizing Q-learning algorithm because it tries to learn the Q-function
directly. A slightly modified form called the policy-based Q-learning algorithm tries to learn an
optimal sequence of plant control inputs (the control policy).

Many recent control system applications of the ideas of reinforcement learning and adaptive
critic architectures exist. Gullapalli describes a reinforcement learning algorithm for learning control.
This method uses radial basis functions and the adjustable parameters of the network are means and

variances of normal distribution functions. The method is applied to a simulated 3 degree-of-freedom

12

robotic arm [22]. Stamenkovich uses adaptive critic and adaptive search elements for learning to
guide a ship through a channel [23]. Shelton [24] demonstrates an adaptive critic design for
controlling a truck with a CMAC (Cerebellar Model Articulated Controller, [18). Tham and Prager
compare the adaptive heuristic critic algorithm with the Q-Learning algorithm for obstacle avoidance
and control in multi-linked robotic manipulators [25]. Gachet et al., present an adaptive heunistic
critic based control system for learning goal based behavior for autonomous robot control. The three
types of behavior discussed are: 1) move to a goal state, 2) do surveillance, and 3) follow a specified
path [26].

3. Neural Identification and Control. There has been an explosion of reported research
in the use of neural networks in control systems in recent years. Bavarian [27] gives an introduction
to the use of neural networks for intelligent control. Several monographs have been compiled
including a well known work edited by Miller, Sutton, and Werbos [28]. White and Sofge have
compiled a book which includes several chapters dealing with the use of neural networks in intelligent
control systems [29]. Hunt et al., have produced a comprehensive survey of the field [30].

Psaltis, Sideris and Yamamura describe three possible architectures for neural control systems
[31]. The indirect leaming architecture attempts to invert the plant in order to provide control signals
which track a given input signal. In the generalized learning architecture the desired plant input signal
is assumed known and the neural network is trained to produce input signals for the next sampling
interval given the current plant output. The result is an output feedback control. The third
architecture is called the specialized learning architecture where the neural network is trained to

provide control to track an input function by minimizing the tracking error.

13

Levin and Narendra [32] present a theory for the design of neural control systems which
stabilize nonlinear dynamic systems about an equilibrium point. This theory is based on nonlinear
control theory. The article contains necessary background information in nonlinear control theory
and many examples illustrating the interaction between nonlinear theory and the use of neural
networks for stable regulation. Possible control methods for nonlinear systems include: 1) the use
of a linear controller which assumes that the plant can be linearized about the operating point, 2)
stabilizing control using feedback stabilization where a change in state variables and a feedback
control law are used to transform a system into one which is linear about an operating point, and 3)
direct stabilization through the use of a nonlinear control law. Neural control designs are given for
the feedback stabilization and direct stabilization methods.

As stated above, adaptive and learning control systems depend on the ability to identify plant
dynamics. There have been a number of contributions in the use of neural networks for system
identification. Narendra and Parthasarathy discuss feedforward and recurrent neural network
structures for identification and control of systems [33]. The authors present a method for training
recurrent neural networks and describe necessary assumptions for well posed neural control problems.
Fernandez, Parlos, and Tsai investigate nonlinear system identification with neural networks by using
a recurrent network to identify nonlinear dynamic systems in discrete time based on input-output
measurements. The results are applied to the identification of boiler dynamics [34]. Polycarpou and
Toannou present a stability theory approach to synthesis and analysis of identification and control

schemes in nonlinear systems using neural networks [35]. Both gradient and Lyapunov synthesis

approaches are applied.

14

Applications of neural networks in adaptive control have also been investigated by several
researchers. Guez, Eilbert, and Kam [36] propose a neural network architecture for neural model
reference adaptive control. This system adjusts feedback gains so that the closed loop time response
matches a desired time response of a given reference model. Hoskins, Hwang and Vagners [37] use
iterative inversion of a neural plant model to provide control signals to the plant. The method is
applied to a problem in redundant manipulator kinematics, a model reference adaptive control system,
and a linear mass-spring-damper system. Hoskins and Himmelblau use similar techniques with an
emphasis on reinforcement learning applied to process control [38].

Goldenthal and Farrell [39] backpropagate the error between the actual plant and a reference
model through a neural network model of the plant and then continue the backpropagation procedure
through the controller network to update controller weights. The technique is demonstrated in a
model reference neural adaptive control system applied to the cart-pole problem. To accomplish this,
the backpropagation algorithm is extended so that the network can function as a closed-loop
controller and to force the closed loop system to match desired reference response.

Lan and Chand also investigate the discrete time linear quadratic regulator problem [40].
They point out that the conventional solution of the problem is an off-line solution. The computed
control history is stored and used later in an open loop control. The disadvantage to this approach
is that it is not robust and does not work for time-varying systems. Lan and Chand formulate an
augmented performance index with the linear constraint equations of the controlled system embedded.
The augmented performance index is then related to parameters in the energy function of a Hopfield

network [41]. The Hopfield network then minimizes the performance index in an iterative fashion

producing the required optimal control.

15

Tiguni, Sakai and Tokumaru [42] report a nonlinear regulator design which uses feedforward
neural networks to augment a linear quadratic regulator design for a nonlinear plant with parameter
uncertainties, The authors assume that the nonlinear plant can be modeled using a known linear state
space model. This linear model is then used as the basis for a linear quadratic regulator (LQR)
design. The LQR design procedure yields gains for plant state feedback which minimizes a linear
quadratic performance index. We now have a regulator design which may be used with the actual
plant, however, the range of optimal control operation is limited.

Bouzerdoum and Pattison give a method for mapping a class of optimization problems onto
a recurrent neural network architecture [43]. The method minimizes a static quadratic performance
index,

169 = % TQu-xTy ()
with respect to vectors x € R" subject to bound constraints
THES I 1 =1,",n (2)
where the subscripts indicate components of the respective vectors. This static optimization problem
has a known solution. However, a matrix inversion is necessary and this is computationally intensive
for large dimensional spaces and difficult for ill-conditioned weighting matrices. The recurrent neural
network solution provides a parallel implementation for solving the problem.

Antony and Acar develop algorithms for real-time optimal control of discrete systems with
respect to a quadratic performance index over a finite time interval [44]. Problem formulations based
on the discrete time Hamiltonian for linear and partially unknown nonlinear systems are given. The
method depends on a model of the plant dynamics using a feedforward neural network. Two distinct

methods are given. For the first method, control vectors at each sample instant are modified during

16

every iteration of the algorithm. The second method develops the optimal control by a backward
sweep beginning at the final time. The second method has slower convergence rates but requires less
storage and fewer computations during each iteration.

In this research, we have formulated two types of neural networks. The first one is called an
“Adaptive Critic’ architecture. The reason for choosing this structure for formulating the hypersonic
vehicle optimal control problems are: 1) this structure obtains an optimal controller through solving
dynamic programming equations, 2) this approach (see, Figure 1), has a supervisor (critic) which
critiques the outputs of the controller network and a neural network controller. Therefore, this
approach has a built-in fault tolerance, 3) this approach needs NO external training as in other forms
of neurocontrollers, 4) this is not an open loop optimal controller but a feedback controller, and 5)
it preserves the same structure regardless of the problem (linear or nonlinear).

The adaptive critic method determines an optimal control law for a system by successively
adapting two networks, an action and a critic network. The control law does not need to be
determined a priori mathematically. This method simultaneously computes and adapts the neural
networks to the optimal control policy for both linear and nonlinear systems. In addition, it is
important to know that the form of control does not need to be known in order to use this method.
Since the control law is computed for a range of initial conditions, this approach is ideal for design
studies.

The second approach is to formulate a neural network for simultaneous identification and
control. This uses a modified form of Hopfield neural networks. The need for this network arose
after the customer indicated that there is a large level of uncertainty in the system parameters. We

anticipated the need for this during the second year and formulated the network while awaiting the

17

POST3D program and inputs. Research and development based on this approach are presented as
a conference paper at the end. This paper was presented at the 1996 Atmospheric Flight Mechanics
Conference in July 1996 at San Diego, CA. This paper is enclosed in the Appendix.

The first part of the rest of this report deals with the adaptive critic approach, problem

formulation, algorithm development and results.

IV. PROBLEM FORMULATION

1. Statement of the General Problem

In this study a problem of the form (finite-time with terminal constraints) where a cost
function, J, given by

te

T=(x(t) + f Y(x(v),u(r))dr 3
0

subject to differential constraints

x=f(x,u) 4)

t;=given X, =given (5)

is considered. x is an n-dimensional state vector, u is an m-dimensional control vector, &(), ¥(),

and f() are linear or nonlinear functions of state and/or control. x, are the initial conditions and
te is the final time.

18

2. Dynamic Programming Background

We can rewrite Eq. (3)

J(x()=U(),u(x(0)) +<J(x(t+1))> (6)

Here, J(x(t)) is the cost associated with going from time t to the final time. Ux(t),u(x(t))) is the
utility, which is the cost from going from time t to time t+1. < J(x(t+1))> is assumed to be the

minimum cost associated with going from time t+1 to the final time. If both sides of the

equation are differentiated and we define

x(x(t))a%‘% 0

then

dU(M,u() , SUX(M®,u)
Ox(t) du(t)

(3)
N . Ox(t+1D)\ | . Ox(t+1) du(x(t))
<A(x(t D) Ox(t) > <k(x(t D) du(t) Ox(t) >

A(x(1))=

From this it can be seen that if <A(x(t+1))>, U(x(t),u(t)) and the system model derivatives are

known then A(x(t)) can be found.

Next, the optimality equation is defined as

SJ(x(t)) _
du(t) ° ©)

Dynamic programming uses these equation to aid in solving an infinite horizon policy or to

determine the control policy for a finite horizon problem.

19

3. Training Methods (Approximation Techniques)

This study uses Eqns. (8) and (9) in order to determine the optimal control policy. The
basic training takes place in two stages, the training of the action network (the network modeling
u(x(t)) and the training of the critic network (the network modeling, or approximating A(x(t)).
Both networks are assumed to be feedforward multiple layer perceptron networks.

The schematics of the controller (action) and critic networks are presented in Figures 2 and
3. To train the action network for time step t, first x(t) is randomized and the action network
outputs u(t). The system model is then used to find x(t+1) and (Ox(t+1))/(du(t)). Next, the
critic from t+1 is used to find A(x(t+1)). This information is used to update the action network.
This process is continued until a predetermined level of convergence is reached.

In order to train the critic network for the time step t, x(t) is randomized and the output
of the critic A(x(t)) is found. The action network from step t calculates u(t) and (Bu(t))/ (dx(V)).
The model is then used to find (dx(t+ 1))/ (8x(t)), (dx(t+1))/(du(t)) and x(t+1). The critic from
step t+1 is then used to find A(x(t+1)). After this, Eq. (8) is used to find A°(x(t)), the target
value for the critic. This process is continued until a predetermined level of convergence is
reached. In an infinite-dimensional problem, the training ends with one stage; however, for a
finite dimensional problem, such as this study, this series of steps is used at each stage. This

process will be explained in detail in the next section.

V. OPTIMIZATION/CONTROL
Motivation for the formulation in this section comes from the need of the customer in that

they would like to study the trajectories from the scramjet turn-off to the rocket burn-out conditions

20

of a certain vehicle. The reason for this is the uncertainties in the parameters of the earlier stage
designs. Consequently, there will be an envelope of conditions from which the rocket will have to
start and yet carry the payload to the pre-specified burn-out conditions. It is assumed that the rocket
burn-out conditions will ensure a proper apogee through the coasting period.

The cost function is given by

J=- Slmf+%sztvf—vfo)2+—;—SB(Yf_YfD)Z

| (10)

where ’ 2 . <hf i hf")z

J = cost function to be minimized

m = mass

\ = velocity

Y = flightpath angle

h = altitude

5, = weights on the final conditions
Subscripts

f = final

fy = desired final

Note that this cost function maximizes the final payload while ensuring that the velocity, the flightpath
angle and the altitude at the final time are as close to the final/desired burn-out conditions as possible.

The equations of motion are given by

21

o= - (1)
gl

h = vsiny (12)

vV =(Tcose-D)/m - psiny/r? (13)

¥ = (Tsina +L)/mv+(Y -p/rzv) cosy (14)
r

where
T = thrust

L = k

12

1 5 .
a —pv:S = lift
29

D = (CD +k2a2)—1-pv25 = drag
° 2

H = gravitational constant
r = radial distance from the center of the earth
R, = radius of the earth
I = specific impulse

P
a = angle of attack

A schematic of the scenario is presented in Figure 4. Final time is unknown, That means, this is a
‘free-final time’ problem. There is no solution in the current literature for solving the ‘free-final time’
problem for an envelope of initial conditions (other than the general method of dynamic
programming).

In order to solve this problem with neural networks, we transform it to one where altitude is

the independent variable. Through this step, we convert it to a problem where we can break it down

22

into several segments of altitude; this also allows us to reach the final desired altitude in all cases.
The initial conditions for this scenario are the possible final conditions from the termination of
scramjet.

This is a two-point boundary value problem where the initial conditions are known but the
final conditions are unknown. Usually, it is solved for a given set of initial conditions; however, in
this project we develop an adaptive critic-based solution which will solve the problem for an gnvelope
of initial conditions. By reformulating the model, we are able to remove altitude from the cost

function since the final condition in altitude is satisfied exactly.

The reformulated equations of motion with altitude, h as the independent variable, are given

T/gl, 1/vsiny (15)

dm/dh

T cos o —(CD +K2a2)%pv28

dv/dh = _ -g/v (16)
mvsiny

where the drag coefficient has been approximated with a parabolic drag polar with a least squares fit.

Tsina + kla-l—pvzs
- 2 v_8
dY/dh = + [_____

mvZsiny rov

cosy a7
vsiny

In Eqns. (15-17), where lift coefficient C__ has been approximated with a linear least squares fit.

23

CDO KK = constants

local acceleration due to gravity

o
1l

In order to calculate the flight time, a fourth equation is added as,

dt/dh = ! (18)
vsiny

For solutions with neural networks, we convert these nonlinear differential equations to

single-step discrete equations as:

T, 1
m,,, = m, - . : Ah (19)
gkIsp v, siny,
V. TV +[(Tk cosa, - Dk)/mkvk siny, - gk/vk]Ah (20)
\ cos
Yeor = Yt (Tksinak+Lk)/mkv:sinyk+ e S ——,-Yk—Ah (21)
[, Yy) Visiny,
L=t +(_-1—] Ah (22)
k+l k .
v, siny,
where
Ah = step size in altitude
k = stage

24

The corresponding Hamiltonian of the optimized problem is

* A, Ve * AYM Y1 (23)

where

The propagation equations for the Lagrange’s multipliers are obtained by partial

differentiation of the Hamiltonian with respect to the states. They are:

A= —% x=[m,v,y]|T (24
T, cosa, -D T, sinee, +L
A=A _Ah |ty b S W k2 k kAYk 25)
k kol mk2 vk Sln-Yk kel Vk SlnYk 1
T
A, =a, - oo 1
x kyesiny, | g L, v
[T, cosa, ggsiny, D,
A1 * - (26)
! m vy Vk m, vy
Ry) 2T, sino, . 2g, cosy,
Y 2 2
my V¢ Yk
T, cot
D WP LI v P
k K1y siny, Sl kel
[- (T, cose, - D,)coty,
+ AVM () (27)
my
L

a _ (T siney + D, Jeoty, _(ﬁ_gﬁ] 1 H

Yk-1 2 1
m, Vv, re Ve) SNy

25

Note that A,,, is needed to solve for A,. The boundary conditions for the multiplier equations are

= [oL
de = (ax)x N (28)

Optimal control is obtained by partially differentiating the Hamiltonian with respect to the control.

In our case, angle of attack, a, is the control variable. We get

—* =0 (29)

This gives

Avk.l [—(Tksino&k +k2pkvklsak)]

{Tk coso, +k, 1 Py vy sl (30)
+ A 2 =0

Tkel vk

First, we solve for the control at the (N-1)" stage where N is the preselected number of stages.

That is, (after using small angle (c)) assumption

A, ['(TN-l +K’sz-1Vr§~15)°‘N-1}

/vy, =0

G

1 2
* A'{N{TN-I vk _2'pN-lvN-l S

26

Note that

A, =S, @N - va) (32)

A= s3(yN - ny). (33)

YN

By substituting for A’v\‘ and AYN in Eq. (31), we get

SZ[VN 'Vm] [—(TN-I * ksz_lv:,_l 5)] On -1
(34)

1 2
Ty +kl-2-pN-lvN-ls]/vN-l =0

M SJ[YN—YfD]

We substitute for vy, and v in Eq. (34) in terms of vy, and Yy, by using propagation equations, Eq.

(25-27).

2
"TN-l(CDD+k2“N-1)qN-1S _ SNy
My Vg SINYy o VN-)

S
- VfDH - (TN-I +2kqu-1) aN-l]

(TN-I * quN-lS)aN-l N (VN-I qN-l] cotYy-,

N-1 VN-1

Sy vn-1 *

* SB[YN—I *

2 .
mN-lvN-lSInYN-l

Ty * ke S
A%

=0

'Ym]

N-1

27

where the dynamic pressure gy, is

This leads to a cubic equation in ¢y, as

where

T,T, a?\I-l * (T1T3 +T5T6) ay., + T, Ty =0

S, T5/<mN-lSinYN—lvN-l)

28

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

We can observe that all quantities are known in terms of quantities at N-1. That is ey, is available

as a feedback control based on states at N-1.

For all other stages, k, we obtain the expression for control in terms of the Lagrangian

multipliers at k + 1.

A T +k, q.S
g St Lk TAAG (44)
A v, T,+2k,q.S

Vil

How do we construct the neural networks to solve this problem?

Solve for oy, in terms of my.;, Va1, Yo

Generate various oy, by changing my,, Va.y, Y1 -

Use a neural network to output ay, for my, , Vi, Yo - called ey, network.

[We have optimal ay, now]

In order to solve for o, (k=0,1,2..N-2), of m,, v, Y,, we need Amk.. , AVM , AYM .So, use
Ay Myt Vaips Yor @nd oy, from step 1 to solve for/\mN_1 , }»VN_] , and AYN_I using the A-
(backward) propagation equations, Eq. (25-27). Traina neural network with my;, Vi, Yo

as inputs and A, as output. Call this Ay, network.

[We have optimal Ay, now.]

How do we construct other networks?

Assume different values of My, Vy., Yn.o and use a neural network to output ty.,. This will
not be optimal. Use My, Vi, i G iD State equations, Eq. (19-21), to obtain m, v, y at
N-1. Use these states in Ay, network to output A,,. Use these Ay, in optimal o, equation,
Eq. (44), to compute (0ty,) e Continue this process till convergence.

[We have optimal oy, now.]

29

4, Assume different values of my,, Vs, Y., and use them to get o, from aN-2 network. Use
all these in the state propagation equations to calculate states at N-1. Input these states in
Ay, network to get Ay, Use this Ay, and states and control at N-2 to find An., from the A
propagation equations. Construct a Ay, network to output Ar.n With My, Vi, Y.z a5 INpUts.

[We have optimal yy., now.]

5. Assume different values of My, Va, Yn.s and construct an a; network similar to oy,
network in step 3.
6. Construct a Ay network similar to Ay, network in step 4.
Continue this process fromk =N-1, N-2,0
How do we use these networks to generate optimal trajectory from given initial conditions?
Assume any m,, v,,Y, and h, [within the trained range]. Use ¢, neural network to find optimal & and
integrate till h for &, network is reached. Use the m,, v, ¥, values to find &, from the «, neural
network and integrate till h, is reached, and so on, till hyis reached.

Note that the forward integration can be done in terms of time and note that the Lagrange multiplier

network, used in the controller synthesis, is not needed now.

V1. NUMERICAL RESULTS
In order to verify the applicability of the adaptive critic approach to flexible trajectory
optimization, we used the rocket vehicle contained in a test case sent by the customer. We present
the results corresponding to two stages of neural-controlled trajectories from the burn-out of the
rocket in Figures 5-15. The desired end conditions are v¢ = 7617 ft/sec, y, = 16.636 deg., hy =

243,600 ft. In trying to match the final conditions, the values of §,, S5, and S, are chosen to be 1,

30

1, and 10°. This means that we desire to try and match the final flightpath angle more closely related
to maximization of final weight and matching the desired final velocity. Effect of changes to initial
flightpath angle are presented in Figures 5.7 We have fixed the initial velocity and mass and changed
the initial flightpath angles. It can be observed from Figure 5 that after following different paths of
velocity in Stage 1 for the first 12.2 seconds, all the 10 paths try to converge, the same trend can be
seen in Figure 6 which shows the flightpath angle histories. Due to the relative emphasis on the
flightpath angle, we can observe that the flightpath angles are more convergent to the desired final
value than the velocities. The weight history is almost invariant since the thrust is almost constant.
Figures 8-11 represent the mass, flightpath angle, velocity, and altitude histories with time where we
change the initial mass in steps. The effectiveness of this formulation is clear from the flightpath angle
history presented in Figure 9. Even though the initial step (due to changes in mass) leads to different
flightpath angles, the control from the last stage brings them very close. Although velocities appear
divergent, it should be observed that they are scattered close to the desired final value. The altitude
history is very close to the same in all the cases as expected and satisfies the final condition. Figures
12-15 represent the state variable histories due to changes in the velocities. Due to the divergence
of the flightpath angle value at the end of the first stage, the second stage velocities show apparent
deviations from the desired value so that the resulting second stage flightpath angles can be closer

to the desired value. The slight variations in the final altitude are due to the forward integration in

time which we limited to 20.4 seconds.

31

VII. CONCLUSIONS
An approach to solving ‘free final time’ problems with an envelope of initial conditions has
been proposed. This approach called ‘the adaptive critic’ consists of two neural networks at stage
developed in a backward sweep. After development, only the controller is used in forward integration
of trajectories. Numerical results from the last stage of a launch vehicle trajectory (provided by the
customer) show that this approach works well and can be used in design. Further work will involve

integration with POST3D, consideration of the other phases of flight etc.

VII. ACKNOWLEDGMENT

We gratefully acknowledge the partial support provided by NASA grant NAG-1-1728.

32

(1

(2]
(3]
[4]

[5]

(6]

[7]

(8]

[%]

[10]

(11]

[12]

BIBLIOGRAPHY

N. Wiener, Cybernetics: or Control and Communication in the Animal and the Machine.
Cambridge, MA: MIT Press, 1949.

W. Ashby, Design for a Brain. New York, NY: Wiley & Sons, 1952.
W. Ashby, An Introduction to Cybernetics. New York, NY: Chapman & Hall, Ltd., 1957.

K. S. Fu, “Learning Control Systems,” in Computer and Information Sciences (J. T. Tou and
R. H. Wilcox, eds.), pp. 318-343, Washington D. C.. Spartan Books, 1964.

J. Sklansky, “Learning Systems for Automatic Control,” JEEE Transactions on Automatic
Control, Vol. AC-11, pp. 6-19, January 1966.

Z. Nikolic and K. Fu, “An Algorithm for Learning without External Supervision and Its
Application to Learning Control Systems,” JEEE Transactions on Automatic Control, Vol.
AC-11, pp. 414-422, July 1966.

Y. Tsypkin, “Optimization, Adaptation, and Learning in Automatic Systems,” in Computer
and Information Sciences-KK (J. T. Tou, ed.), pp. 15-32, New York, NY: Academic Press,
1967. Proceedings of the Second Symposium on Computer and Information Sciences held
at Battelle Memorial Institute, August 22-24, 1966.

Y. Tsypkin, “Self-Learning--What is it?,” JEEE Transactions on Automatic Control, Vol.
AC-13, pp. 608-612, December 1968.

Y. Tsypkin, Adaptation and Learning in Automatic Systems. New York, NY: Academic
Press, 1971.

J. Mendel and R. McLaren, “Reinforcement Learning Control and Pattern Recognition
Systems,” in Adaptive, Learning, and Pattern Recognition Systems. Theory and Applications
(J. Mendel and K. S. Fu, eds.), pp. 287-318, New York, NY: Academic Press, 1970.

A. Barto, “Connectionist Learning for Control: An Overview,” in Neural Networks for
Control (W. T. M. II, R. Sutton, and P. Werbos, eds.), ch. 1, pp. 5-58, Cambridge, MA: MIT
Press, 1990.

B. Widrow, N. Gupta, and S. Maitra, “Punish/Reward: Learning with a Critic in Adaptive
Threshold Systems,” IEEE Transactions on Systems, Man., and Cybernetics, Vol. SMC-3,
pp. 455-465, September 1973.

33

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike Adaptive Elements That Can
Solve Difficult Learning Control Problems,” IEEE Transactions on Systems, Man., and
Cybernetics, Vol. SMC-13, pp. 834-846, September/October 1983.

R. Sutton, Temporal Credit Assignment in Reinforcement Learning. PhD thesis, University
of Massachusetts, Amherst, 1984. This is the origin of the Adaptive Heuristic Critic

algorithm.

P. Werbos, “Backpropagation and Neurocontrol: A Review and Prospectus,” in Proceedings
of the International Joint Conference on Neural Networks, Vol. 1, (Washington D.C.), pp.
209-216, June 18-22, 1989.

J. Jameson, “A Neurocontroller Based on Model Feedback and the Adaptive Heuristic
Critic,” in Proceedings of the International Joint Conference on Neural Networks, (San
Diego, CA), pp. I137-1144, IEEE, June 1990.

D. A. Sofge and D. A. White, “Neural Network Based Process Optimization and Control,”
in Proceedings of the 29th Conference on Decision and Control, New York, NY), pp. 3270-
3276, IEEE, December 1990.

J. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulated
Controller (CMAC),” Transactions of the ASME Journal of Dynamic Systems, Measurement
and Control, Vol. 97, pp. 220-227, September 1975.

C. Watkins, Learning with Delayed Rewards. PhD Thesis, Cambridge University, 1989.

C. Watkins and P. Dayan, “Q-learning,” Machine Learning, Vol. 8, No. 3-4, pp. 279-292,
1992.

S. Bradtke, “Reinforcement Learning Applied to Linear Quadratic Regulation,” in Advances
in Neural Information Processing Systems, pp. 295-302, San Mateo, CA: Morgan Kaufmann

Publishers, 1993.

V. Gullapalli, “A Stochastic Reinforcement Learning Algorithm for Learning Real-Valued
Functions,” Neural Networks, Vol. 3, pp. 671-992, 1990.

M. Stamenkovich, “An Application of Artificial Neural Networks for Autonomous Ship
Navigation Through a Channel,” in Proceedings of the Vehicle Navigation & Information
Systems Conference, (Dearborn, MI), pp. 475-481, October 20-23, 1991.

R. Shelton and J. Peterson, “Controlling a Truck with an Adaptive Critic CMAC Design,”
Simulation, Vol. 58, pp. 319-326, May 1992.

34

(25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

[35]

[36]

(37]

C. Tham and R. Prager, “Reinforcement Learning Methods for Multi-Linked Manipulator
Obstacle Avoidance and Control,” Tech. Rep., Cambridge University Engineering
Department, Trumpington Street, Cambridge CB2 1PZ, UK, March 25, 1993.

D. Gachet, M. Salichs, and J. Pimentel, “Learning Emergent Tasks for an Autonomous
Mobile Robot,” Tech. Rep., Dpto. Ingenieria, Universidad Carlos III de Madrid, Spain, 1994.

B. Bavarian, “Introduction to Neural Networks for Intelligent Control,” /EEE Control
Systems Magazine, Vol. 8, pp. 3-7, April 1988.

W. Miller, R. Sutton, and P. Werbos (Eds.), Neural Networks for Control. Cambridge, MA:
The MIT Press, 1990.

D. White and D. Sofge (Eds.), Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, New York, NY: Van Nostrand Reinhold, 1992.

K. Hunt, D. Sbarbaro, R. Zbikowski, and P. Gawthrop, “Neural Networks for Control
Systems-A Survey,” Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992,

D. Psaltis, A. Sideris, and A. Yamamura, “A Multilayered Neural Network Controller,”
IEEFE Control Systems Magazine, Vol. 8, pp. 17-21, April 1988.

A. Levin and K. Narendra, “Control of Nonlinear Dynamic Systems Using Neural Networks:
Controllability and Stabilization,” /EEE Transactions on Neural Networks, Vol. 4, pp. 192-

206, March 1993.

K. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using
Neural Networks,” JEEE Transactions on Neural Networks, Vol. 1, pp. 4-27, March 1990.

B. Fernandez, A. Parlos, and W. Tsai, “Nonlinear Dynamic System Identification Using
Artificial Neural Networks (Anns),” in Proceedings of the International Joint Conference on
Neural Networks, Vol 2. (New York, NY), pp. 133-141, IEEE, June 17-21, 1990.

M. Polycarpou and P. A. Ioannou, “Identification and Control of Nonlinear Systems Using
Neural Network Models: Design and Stability Analysis,” Tech. Rep. Report 91-09-01,
Electrical Engineering, University of Southern California, Sept. 1991.

A. Guez, J. Eilbert, and M. Kam, “Neural Network Architecture for Control,” JEEE Control
Systems Magazine, Vol. 8, pp. 22-25, April 1988.

D. Hoskins, J. Hwang, and J. Vagners, “Iterative Inversion of Neural Networks and Its
Application to Adaptive Control,” JEEE Transactions on Neural Networks, Vol. 3, pp. 292-
301, March 1992.

35

[38]

[39]

[40]

(41]

[42]

[43]

[44]

J Hoskins and D. Himmelblau, “Process Control Via Artificial Neural Networks and
Reinforcement Learning,” Computers and Chemical Engineering, Vol. 16, pp. 241-251, April
1992.

W. Goldenthal and J. Farrell, “Application of Neural Networks to Automatic Control,” in
Proceedings of the AIA4 Conference on Guidance, Navigation, and Control., (Portland,
OR), pp. 1108-1112, August 20-22 1990.

M.-S. Lan and S. Chand, “Solving Linear Quadratic Discrete-time Optimal Controls Using
Neural Networks,” in Proceedings of the 29" Conference on Decision and Control,
(Honolulu, HI), pp. 2770-2772, December 1990.

D. Tank and J. Hopfield, “Simple Neural Optimization Networks: An a/d Converter, Signal
Decision Circuit and a Linear Programming Circuit,” IEEE Transactions on Circuits and
Systems, Vol. CAS-33, pp. 533-541, May 1986.

Y. Iguni, H. Sakai, and H. Tokumaru, “A Nonlinear Regulator Design in the Presence of
System Uncertainties using Multilayered Neural Networks,” IEEE Transactions on Neural

Networks, Vol. 2, No. 4, pp. 410-417, 1991

A. Bouzerdoum and T. Pattison, “Neural Network for Quadratic Optimization with Bound
Constraints,” IEEE Transactions on Neural Networks, Vol. 4, pp. 293-304, March 1993.

J. Antony and L. Acar, “Real Time Nonlinear Optimal Control Using Neural Networks,” in

Proceedings of the American Control Conference, Vol. 3, (Baltimore, MD), pp. 2926-2930,
June 29-July 1, 1994.

36

F CRITIC ‘

A |
YN ey PITEN
« . —_— (=l ~ = 5 _‘__]
.‘\(t+‘£) AL) ~ ~ rpe
‘/ o 1‘.(‘.?'.)

L MODEL \

no Iy

ACTION
(CONTROL) -

Figure 1:

Adaptive Critic for Control

37

wexbetqg BuTUTEIJ YIOMISN UOTIOV

\

»

(L-+1)
(1) uonound
AN
BPOIN
woelsAg |~

17z 2anbtd

38

wexbetq butureil YIOMISN OT3TID

:¢ 2anb1g

/ .)
sl)ille)
v_-
(Nx) ¢ X
. (L) . -
. (TEEIEN
1) uolourn-| /
| Awnn (e
(TER)) mmxn: (o xn-
WX @ _ m C
— 3101 (N 0
Aﬁ;;vxﬁw wo|sAg “ uoloy | ‘lim@x
W J{

39

Local Vertical

Local Horizontal

Surface of the earth

//

/j////i/////' Center of the earth

Figure 4: Schematic of the Trajectory
Optimization Scenario

40

7600 T T T] T t 1 T
7550_ .. 4
g-/soo_
2]
=
-2
‘0
L)
_ g 7450 R P 9Py A A SO R N T —
7400_ —
7350 I | I { | i !) t r
0 2 4 6 8 10 12 14 16 18 20
_ Time (sec)
Figure 5: Velocity History
(with changes in initial gamma)

41

182 T T T 1 i i i T i T

1 6.2 l l L L | | ! ! ! !
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
Figure 6: Gamma History

(with changes in initial gamma)

42

x 10
10.3 T T] f] 1] h 1
102_ ... -
101_ —

Weight (Ibs)

9.5

9.4

10 12 14
Time (sec)
Weight History

(with changes in initial gamma)

43

Weight (Ibs)

10.3

9.4 : ;
0 4 6 8 10 12 14 16 18 20
Time (sec)

Weight History
(with changes in initial mass)

44

Gamma (deg)

18

17.5
17
16.5 l " ! ‘ 'L i ‘ ' i
0 4 6 8 10 12 14 16 18 20
Time (sec)
Figure 9: Gamma History

(with changes in initial mass)

45

~

Velocity (ft/sec)

7620 T T
7600k - ;”'”"f ;
7580F - ; ,,,,,,, 3.,_”‘_

75604 - ?”.H.”% ; e é E SRR /

\l
o
o
O
T

T

7520

~
wn
(&)
o
T

7480F - é o ; ?. ”;¥
7460F - - TH.“.”{”.,

7440 " - ;‘”.”.é é S 1 EH._Y..% L .

7420 i ? * l
0 2 4 o) 8 10 12 14 16 18 20
Time (sec)

Figure 10: Velocity History
(with changes in initial mass)

46

2.5

2.4

2.3

Altitude (ft)
N
(Y

2.1

2
19 L L ! ! ! 1 L : !
0 4 6 8 10 12 14 16 18 20
Time (sec)
Figure 11: Altitude History

(with changes in initial mass)

47

18

17.8

17.6

17.4

eg)

- 17.2

17

Gamma (

16.8

16.6

16.2

4 6 8 10 12 14 16 18 20

Time (sec)

Figure 12: Gamma History
(with changes in initial velocity)

48

10.3

10.2 -

101

96_

9.5F - L

9.4

2 4 6 8 10 12 14 16 18 20
Time (sec)

Weight History

Figure 13:
(with changes in initial velocity)

49

Velocity (ft/sec)

7650

7600

7550

7500

ﬂ
N
[8))]
(@]

7400

7350

7300
0

1

T

{) | 1 1 i | | l

!

2 4 6 8 10 12 14 16 18
Time (sec)

Figure 14: Velocity History
(with changes in initial velocity)

50

20

25 1 i 7 T { i 1 i ¥ 1

2.4

2.3

Altitude (ft)
N
N

2.1

! 1. I | | !

1.9 ‘ - - :
0 2 4 6 8 10 12 14 16 18 20
Time (sec)
Figure 15: Altitude History

(with changes in initial velocity)

51

APPENDIX

52

APPENDIX

A Class of Modified Hopfield Networks
for Aircraft Identification and Control

Jie Shen

S. N. Balakrishnan®

Department of Mechanical and Aerospace Engineering
and Engineering Mechanics
University of Missouri-Rolla
Rolla, MO 65401

(573)341-4675

Abstract

This paper presents a class of modified Hopfield neural networks and their use in
solving aircraft optimal control and identification probiems. This class of networks
consists of parallel recurrent networks which have variable dimensions that can be
changed to fit the problems under consideration. It has a structure to implement an
inverse transformation that is essential for embedding optimal controi gain sequences.
Equilibrium solutions are discussed. Energy minimization of the networks leads to
identification of the system parameters. Numerical results are provided to identify
the dynamics of an aircraft, and the corresponding optimal control is calculated on-
line. Comparison of the neural network solutions with point-wise optimal control
using LQR. formulation for this multivariable control problem shows near identical

results throughout the trajectories.

1 Introduction

There has been a spurt of activities in the area of
artificial neural networks (ANN) during the last ten
years. For a survey of the ANN work done in the
areas of identification and control, see bibliography.
There are two types of networks used in almost all
ANN applications. The first is the more widespread
feedforward network and the second is a less un-
derstood recurrent network. The feedforward net-
works where data flow is unidirectional are essen-
tially static; the recurrent networks, on the other
hand, are based on feedback connections. Due to
feedback connections, the recurrent networks are
better suited for control problems which are based
on closed-loop solutions.

In this paper, a variation of the Hopfield net-
work is proposed. Compared to the classic Hopfield
network, it keeps the characteristic of energy min-

imization, which is used to minimize the identifi-
cation errors. The mean-square error is used as a
performance criterion in system identification, and
is formulated in an energy form to utilize the net-
work functionality. Based on the equilibrium analy-
sis, these networks can perform an inverse transfor-
mation on matrices and other auxiliary mathemat-
ical operations. This feature allows the networks
to give out optimal control gain sequences based on
the identified system parameters. In addtion, this
class of networks has more degrees of freedom than
the classic Hopfield networks. The network architec-
ture can be augmented according to the problems at
hand.

The modified Hopfield network is analyzed in sec-
tion 2. Its identification application is presented in
section 3, while the control application is in section
4. Both the principles and examples are given in

* Associate Fellow, AIAA (1o whom all correspondence should be sent)

1

American Institute of Aeronautics and Astronautics

each individual section. Conclusions are presented
in section 3.

2 Modified Hopfield Networks

2.1 Stability

The modified Hopfield network is a variant of the
classical Hopfield network. Fig (1) shows its basic
feacures.

We will demounstrate its stability by analyzing its
dynamics and using energy function. The network
has two clusters of neurons. The right part of the
networks is characterized by outputs ®; which are
nonlinear functions f of their state u;

®; = fluy) (1)

where

n
uj; = E WiV -—bj,

=1

j=12,...

with b; the exogenous input current, and v; the out-
put of the left cluster of amplifiers. Conductance wi;
connects the output of the j'th neuron to the input
of the i'th neuron, which are indicated in Fig (1) as
=

The left part of the networks is characterized by
the dvmamics. The amplifiers have input conduc-
tances and capacitances denoted as g; and ¢;, respec-
tively. They both represent the amplifiers’ parasitic
input impedance and are responsible for the appro-
priate time-domain behavior of the entire network.
At the same time, we assume that the response time
of ®(u;) is negligibly small compared to that of the
amplifiers g(us).

Under these assumptions, Kircahoff's law gives
us

d‘u,- i
Ci—= = —a; — Giui —) w;i®;,
at ; I (3)

(i=12,...,n)
where G; denotes the sum of all conductances con-

nected to the input of the ith neuron and is equal
to

n

G: £ gi — Z wyij (4)

=t

and a; is the exogenous input current.

Using Equation (1), the above formuia can be
expressed as follows

Cl"ui m) n
Ci’z‘ = - — G-_‘U{ heet Z_: w]'ij(kz WiiVz — bj)
= =1

(i=12,....,n) (3)

We now define the following Liapunov function
as an energy function Efor the modified Hopfield
networks

E(U) éZakvk—L-ZF Zwk,vvk —-bj
=1 k=1

k=1

-~ - . " -ty (6)
. ;c /0 g~} (v)dv
Define
fe) = £ ™)

The components of the gradient vector of the as-
sumed energy function (6) can be expressed by find-
ing its derivatives as follows

SE(v

év‘-

=qa; + Giu; + ijif(z wesve — bj)
k=1

=1

(8)

The time derivative of the energy function can
now be expressed using the above equations

dE "L dv; -
- = — | ai +uGi + i
dt o dt Giy ; Wi

SO weive = by)
k=1

ke dv; dug
= -LC0% &

= —ic,g'll(vi) (%)2 9)

Since C; > 0, and g~ !(vi) is a monotonically in-
creasing function n, the sum on the right sight of (9)
is nonnegative, and therefore w e have dE/dt < 0,
unless dw;/dt = 0, in which case dE/dt = 0. This
means that the evolution of dynamic system (3) in
state space aiways seeks the minima of the energy
surface £. Integration of Eas. (3) and (6) shows
that the outputs v; do follow gradient descent paths
on the E surface.

American Instituce of Aeronautics and Astronautics

= = =
e E =}

P -Q [

[o, [, i M
T T [
IR - | a :
1(\\I// e \’3 ‘ V s0a0 V

] ? ! |
: . ‘r -
¢ | | 5
i T ‘. \ f ; |
wi of wf o f o f o of

Figure 1: Modifled Hopfleid Networks

2.2

Py

Solution

In order to get the analytic expression for the con-
verged value of the networks, we assume small sig-
nals and that they work in the linear region of the
amaplifier. Note that in the above derivation, there is
no diference if we denote the connection matrices in
the left and right adjoint subnets separately. These
connection matrices are nothing but the weights wi;.
Let the right connection matrix be D1, and the left
connection matrix be Da, the stability conclusion
szill holds. Under these mild assumptions, and with
Kirchhoff's law, we can have a relation in a matrix
form as

C— = -a—GU-DfQ (10)
Q = KiD2V-Db)
= KQ(K1D'3U - b) (11)

where a and b are the exogenous inputs of the ad-
joint networks G and F respectively. U is the input
to & and V is the output of G. We also assume
that ail amoplifier gains X in G are equal. Similarly
the gains of amplifiers in F are X». K, and K, are
scalars. Substitute Equation (11) into Equation (10)

3

to get
U - _._cu-
dt
DI X (K D2U -b) (12)
= —(G_:'KQKLDITD’_Z)U
+KDib-a (13)
Whea the networks reach equilibrium,
dU/dt =0, and
Vv = K,U
G \! a
= (DIDy+ —— DTb - — (14
(b K1K2> (h Kl>()

2.3 Discussion

Equation (14) gives the general solution for the mod-
ified Hopfleld networks. Compared with the classi-
cal Hopfield networks, an obvious feature is thac it
involves more parameters. e may find some ap-
plications in which these parameters can be taken
advantage of. Also some of them can be avoided
depending upon the desired objective.

Note we get two factors involved in the inverse
operation. As a result, the structure of this kind of
recurrent networks is quite flexable. whiile the clas-
sical Hoofieid is seif-recurrent, that is, it {eeds back
its own output; the variation is mucually recurrent,
that is, it feeds back the outputs of its two-adjoint

American Institute of Aeronautics and Astronautics

parts. This architecture can be expanded further
with ease to three or four subnets or several layers
as needed. Some special applications may need that
compuctational relationship, but it is not needed for
tne appiication considered here.

The dimensioas of parameters a, b, Dy and D
depend on the applications. K and K also can be
designed to provide appropriate magnitudes. If K
is large, then G and a wiil boch have less effect on
the output V or ignorable. If we want a have rea-
sonable influence in the expression while G shouid
not, then we design K, large, and determine K ac-
cording to the requirements on a.

3 Systemn Identification

3.1 Problem Forrmulation

The proposed structure for system identification in
the time domain is shown in Fig (2). The dynam-
ics of a linear plant (to be identified) are defined by
the usual equations, where 4, and B, are unknown
matrices and z and u are the state and concrol re-
spectively.

%X =Apx+Bpu (13)

The dynamic equation of the system model de-
pends on e, which is the error vector between actual
systern states x and estimated values y.

y = Ag(e, t)x + By(e, t)u ~ Ke (16)

Therefore, the error dynamics equation is a func-
tion of state and conctrol.

é=(Ap—A,)x+(Bp —Bsju+Ke

(7).

The goal is to minimize simultaneously square-
error rates of all states urilizing a Hopfield neework.
To ensure global convergence of the parameters, the
energy function of the network must be quadratic
in terms of the parameter errors, (Ap — A,) and
(Bp — B,). However, the error rates e in Ea. (17)
are functions of the parameter errors and the state
errors. The state error depends on y, which, in turm,
is influenced by A, and B,. Hence, an energy func-
tion based on & will have a recurrenc relation with
A, and B,. To avoid this, we use the following en-
ergy function, where tr defines the trace of a martrix,

and (-)T is the transpose of matrix. (see, Raol, Bib-
liography)

IS
E = f/; Eeq\t) eq(t)dt

_l/T
- £

((x = Ayx — Byu)dt (18)

(x — A,x - B,u)T

pIf o=

In order to facilitate the derivation, we expand
the items in the factors of the energy function, and
ucilize the trace identities to simplify.

BRI N
?/o §xxat

—
L

Il

oy
/.ﬁ

e

1 Tr
BSLT/(; ‘Q'Ul.ldt

- - -
(A, %/- xuTdt| B
L -0 j
’1 T]
— tr| A, LT/ xxTdt (19)
]
(B, %/ uxTa'z>
0

1 [T1
- —/ _—:'cT:i:dt-‘
0)

2

r4

Equation (19) is quadratic in terms of A, and
B,. Substituting Apx + Bpu for x in Eq. (19) in-
dicates that £ is also a quadratic function of the
parameter errors. Based on Eq. (19), we can pro-
gram a Hopfield network that has neurons with their
states representing different elements of the A, and
B, matrices. From the convergence properties of the
Hopfield network, the equilibrium state is achieved
when the partial derivatives dE/JA, and JE /98B,
are zero. We use the following identitiesto find the
partial derivatives of E.

oir (ABAT) = 245 (20)

A
g

BTDT (21)
A

tr(ABD) =

This results in the following, where AJ and B
are optimum solutions of the estimation problem.

American Institute of Aeronautics and Astronautics

“ANGLE OP ATTACK
< FUGHT PATH ANGLE
- YELOCITY

O Y

Figure 3: Schematic of Longitudinal Flight

Define,
T
[wij] = % /
0
(xxT 0 0 0 xx O 0 O W
0 xxT 0 0 0 xx 0 O
0 0 xx¥ 0 0 0 xu O
0 0 0 xxT 0 0 0 xu dt
ux?T 0 0 0 v 0 0 0
0 uxf 0 0 0 w 0 0
0 0 ux¥ 0 0 0 u* 0
L0 0 0 wxT 0 0 0]
1 [T - . . T
[ai] = —T-/ [:I'JLXT Tax* i’3XT I4XT UXT] dt
° (29)

With these as weights and biases of the networks,
aij, and b; can be solved through Egs. (27) and (28).
Derivation of (wy;] and {a;] assumes that the neuron
input conductance, Gy, is low enough so that the the
second term in Eq. (3) can be neglected.

2

.y

3

We present a representative numerical example to
validate the capacities of the modified Hopfleld net-
works. The orientation of an aircraft involving loagi-
tudinal dynamics is shown in Fig (3). The linearized
equations of motion of an aircraft in a vertical plane
are given by

Numerical Example

x = Ax + Bu (30)
where, the elements of the state space x are
x=u a 8 gt (31)

6

The matrix A represents the dynamic stability
derivatives and is given by

—0.0148 -13.88 =32.2 0
. | —000019 -0.34 0 1
e = 0 0 0 1
0.00005 -43 0 -03

The matrix B represents the control derivatives and
is given by
-1.1
-0.11
0
-8.74

The control variable u represents elevator deflection.

Fig (4) shows che simulation resuits of the system
identification. These figures represeat only Apii,
Api2, By, and By histories; similar results can be
obtained for other elements of the 4, and B, matri-
ces. From the numerical resuits shown in Fig (4), it
is clear that the network is able to identify system
parameters very well.

B,

4 Optimal Control Application

4.1 Problem Formulation

Let the plant to be controlled be described by the
linear equaction

(32)

T4+l = ArTi = B;;‘u.';

xth £« € R® and ux € R™. The associated perfor-
mance index is the quadratic function

Av“L
1 1
st sy = 1 Y (Qum —ulRen)
2 2 k=1t (33)

American [nstitute of Aeronautics and Astronautics

3 4 S 6 7 3 9 19

Figure 4: Identification History

defined over the time interval of interest (i, V]. Note
that both the plant and the cost-weighting matrices
can be time-varving. The initial planc state is given
as 7;. We assume that Qk, Rk and Sy are syrmetric
positive semidefinite matrices, and in addition that
|Re} # 0 for all k.

The objective is to find the control sequence
U, Wicl, .- -, UN—1 tO minimize Ji.

To solve this linear quadratic regulator (LQR)
problem, we begin with the Hamiltonian function

Hk = (ﬁszIk —i-u“,:Rkuk) - /\{_H (.{k.’z:/, +Bkug)

(34)

(ST

Then we can get the state and costate equations

= Az + Beue (35)

-~
-

+1 =
® Gy

Time3ec)
3 L f) ? 2 3 10
ime{sec)
GH
A = —é;: = Qize + -’&Z‘Aki—l (36)
and the stationarity coadition

O0H: -
= '-a—;: = Reue + BE’\k+L (31)

This procedure will finally lead to the control,

u,g:—-KgIg, k<N

where the Kalman gain K is given by

K= (BZSH.),BJ; - Rk)—l B_Z'Sk—ﬁ-LAl:
(38)

In terms of the Ricatti variable Sk, now

Sk = AESI:-\-L (AE - Bka:) -+ Qk (39)

American Institute of Aeronautics and Astronautics

py— - >
l; '—“'_'_'—l‘zgz “

!
v !
Procuct?

:——;1: K3 l E}

Inusgracon

Sumi 3 seopa
K it
=
ez m
L L= =
Proauc@ Swen Sune
Eﬁ ‘ Gensrawr
il
E:-‘ Loy == '9{5.
. ~ »—i} Generator!
. =
Praguct l’_,‘Sum Scope2

Figure 5: Simulation plot

In the application where the concrol interval is
finite, Sy will be given. Alternacively use Equa-
zion (38) and (39), we will get a series of K. The
gain matrix K will generally be time-varying even
when the matrices Az, Bk, Qr and R, are all con-
stant. Burt if the control interval is infinite, the above
formulation need to be changed a little.

5}

-

4

We briefly discuss the recurrent network solution for
optimal gain sequence.

Based on the recursions in Equations (38) and
(39), the most commoanly encountered operations are
scalar and outer product vector muitiplications and
matrix-vector multiplication. But the crucial oper-
ation here is the inverse to get the Kalman gain.

The modified Hopfield networks contain both in-
variant and variable parameters. Invariant parame-
ters are fixed in the neuron-computing model, whiie
variable parameters can be modified. By comparing
Eas. (38) and (39) with the stable outpuc of the net-
work Eq. (14), if we set D7 = BE Sks1, D2 = By,
—(—'GA,—' = R,,and b = 44, a = 0, the network will
give us the Kalman sequence. As we know, it is not
difcult for the circuits to achieve the multipiication
of two signals. However, since D, and D, are con-

Network Solution/Implementation

]

nection conductances, can they be changed by other
signals like BJ Sk and Bi?

The answer is a voltage-controlled switch. A
voltage-controlled switch can be implemented using
a single field-effect or MOS transistor operating in
the resistive (ohmic, also called linear) region. So, all
the signais are preferred to be voltage signals. The
system parameters A and By are generally the out-
pucs of identification modules which are convenient
to be given out as voltages. The optimal control
formulation does no¢ limic the Ag, Be, Qx and Re
matrices to be constants and the modified Hopfield
Hopfield network doesn't limit its capacities either.
Time-varying Ak, Bgx etc. are easy to ce feed into
the net as voltage signais to be used in the compu-
tations.

4.3 Numerical Example

We consider the synthesis of an optimal longitudi-
nal autopilot in this section. The performance index
in this application is an infinite-time quadratic cost
function. The niminizing coatrol is expected to drive
+he deviations of the longitudiral dynamucs in pitca
angie 4, pitch race q, forward velocicy u’, and andle
of attack a to zero.

American [nstitute of Aeronautics and Astronautics

w

~
¥

Contiod

Figure 6: Concrol History

The system parameters are the same as identifi-
cation. The performance index has the form

x
J = / (xTQx + uTRu) dt (40)
0

where Q, and R are appropriate weighting matrices.
We select R =91.32 and

10.37 0 0 0

o= 0 0.0004 0.0016 0

: 0 0.0016 7.25 0
| O 0 0 14.84

The simulation plot is shown is Fig (3). The con-
rrols which are calculated by networks, compared
vith LQR results are shown in Fig (6). The states
trajectories are shown in Fig (7). The controis are
applied at 2 seconds.

5 Conclusion

A class of modified Hoofield networks has been pre-
sented to solve parameter identification and optimal
control problems. The architectures are designed
to suit an energy minimization for system identifi-
cation and a typical optimal control algorithm for
system control. Similar to the Hopfeld network,
the stability of these modified networks is guaran-
teed. But they provide more degrees of freedom and
dexdbility to accommodate different applications. A
four-dimensional aircraft control proolem is iden-
tified and optimal comtrol is obtained as illustra-
tions of these approaches. Future work on this topic

9

will investigate the robustness of such network con-
troilers and the use of these methods for other rele-
vant applications.

ACKNOWLEDGMENT

This study was partially funded by
NSF Grant ECS-9313946, the Missouri
Department of Economic Development
Center for Advanced Technology Pro-
gram and by NASA Grant NAG1-1728.

Bibliography

1. Balakrishnan, S.N. and Weil, R.D., “Neuro-
control: A literature Survey”, Mathl. Comput.
Modeiling, Vol. 23, No. 1/2 pp. 101-117, 1996.

2. Hunt, N.F., Sbarbaro, D., Zbikowsid, R. and
Gawthrop, P.J., “Neural Networks for Conrtrol
System - A Survey,” Automatica, Vol. 28, No.
6, pp. 1083-1112, 1992.

3. Hoofleld, J.J., and D. W. Tank. 1986. “Com-
puting with Neural Circuits: A Madel,” Sci-
ence 233: 625-633.

Miller, W.T., Sutton, R.S. and Weroos, PJ.
Neural Networks jor Control, MIT Press,
Cambridge, MA, 1990.

e

American Institute of Aeronautics and Astronautics

159

Tima(sec)

3 7 8 3
Tima{sec)

Figure 7: States Trajectories

White, D.A. and Sofge, D.A., Handbook of [n-
teiligent Control - Neural, Fuzzy, end Adap-
tive Approaches, Van Nostrand Reinhoid, New
York, 1992.

Raol, J.R., Parameter estimation of state
space models by recurrent neural networks, IEE
Proc.-Control Theory Appl., Vol. 142, No. 2,
ppll4118, March 1995

Narendra, K.S, and Parthasarathy, K., “Iden-
tification and Control of Dynamical Systems
Using Neural Networks”, [EEE Trans. on
Neuvral Networks, Vol. 1, No. 1, pp. 426,
March, 1990.

. DARPA Neural Network Study, Fairfax, Vir-

ginia: AFCEA Int. Press, 1988

. Hopfleld, J.J., “The Effectiveness of Analogue

‘Neural Network’ Hardware,” Vetwork 1: 27-

10

10.

12.

13.

40, 1990

Hopfield, J.J., “Neurons with Graded Re-
sponse Have Coilective Computational Prop-
erties Like Those of Two State Neurons,” Proc.
National Acedemy of Sciences 31: 3088-3092,
1984

Hopfeld, J.J., “Neural Networks and Physical
Systems with Emergent Collective Computa-
tional Abilities,” Proc. National Academy of
Sciences 79: 2534-2538, 1982

Special Section on Neural Networks for Con-
trol Systems, [EEE Conct. Sys. Mag., Vol. 9,
No. 3, pp. 25-39, April 1989.

Special [ssue on Neural Networks in Control
Systems, [EEE Cont. Sys. Mag., Vol. 10, No.
3, pp 3-37, April 1990.

American Institute of Aeronautics and Astronautics

16.

Kamp, Y., and Hasler, M., Recursive Neural Net-
works for Associctive Memory, Chichester, U.K.
John Wiley & Sons, 1990

Friedlard, B., Conirol Systemn Design, McGraw-Hil
Book Company, 1986

Simulink, Dynamic System Simulation Software
For the X Window System, The Math Works Inc.,
1993

11
American Institute of Aeronautics and Astronautics

